Improving supervised classification accuracy using non-rigid multimodal image registration: Detecting Prostate Cancer
نویسندگان
چکیده
Computer-aided diagnosis (CAD) systems for the detection of cancer in medical images require precise labeling of training data. For magnetic resonance (MR) imaging (MRI) of the prostate, training labels define the spatial extent of prostate cancer (CaP); the most common source for these labels is expert segmentations. When ancillary data such as whole mount histology (WMH) sections, which provide the gold standard for cancer ground truth, are available, the manual labeling of CaP can be improved by referencing WMH. However, manual segmentation is error prone, time consuming and not reproducible. Therefore, we present the use of multimodal image registration to automatically and accurately transcribe CaP from histology onto MRI following alignment of the two modalities, in order to improve the quality of training data and hence classifier performance. We quantitatively demonstrate the superiority of this registration-based methodology by comparing its results to the manual CaP annotation of expert radiologists. Five supervised CAD classifiers were trained using the labels for CaP extent on MRI obtained by the expert and 4 different registration techniques. Two of the registration methods were affine schemes; one based on maximization of mutual information (MI) and the other method that we previously developed, Combined Feature Ensemble Mutual Information (COFEMI), which incorporates high-order statistical features for robust multimodal registration. Two non-rigid schemes were obtained by succeeding the two affine registration methods with an elastic deformation step using thin-plate splines (TPS). In the absence of definitive ground truth for CaP extent on MRI, classifier accuracy was evaluated against 7 ground truth surrogates obtained by different combinations of the expert and registration segmentations. For 26 multimodal MRI-WMH image pairs, all four registration methods produced a higher area under the receiver operating characteristic curve compared to that obtained from expert annotation. These results suggest that in the presence of additional multimodal image information one can obtain more accurate object annotations than achievable via expert delineation despite vast differences between modalities that hinder image registration.
منابع مشابه
Similarity Measures for Non-Rigid Registration
Similarity measures for non-rigid multimodal registration are required to be local in order to enable correction of small image differences, and multimodal, to allow images to be acquired using different imaging techniques. Unfortunately all commonly used multimodal similarity measures are inherently global and cannot be directly used to estimate local image properties. We have derived a local ...
متن کاملGraph Embedding to Improve Supervised Classification and Novel Class Detection: Application to Prostate Cancer
Recently there has been a great deal of interest in algorithms for constructing low-dimensional feature-space embeddings of high dimensional data sets in order to visualize inter- and intra-class relationships. In this paper we present a novel application of graph embedding in improving the accuracy of supervised classification schemes, especially in cases where object class labels cannot be re...
متن کاملOptimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps
Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...
متن کاملOptimization of clinical target volume delineation using magnetic resonance spectroscopic imaging (MRSI) in 3D conformal radiotherapy of prostate cancer
Background: For the purpose of individual clinical target volume assessment in radiotherapy of prostate cancer, MRSI was used as a molecular imaging modality with MRI and CT images. Materials and Methods: The images of 20 prostate cancer patients were used in this study. The MR and MRSI images were registered with CT ones using non-rigid registration technique. The CT based planning (BP), CT/MR...
متن کاملA Non-rigid Multimodal Image Registration Method Based on Particle Filter and Optical Flow
Image Registration is a central task to many medical image analysis applications. In this paper, we present a novel iterative algorithm composed of two main steps: a global affine image registration based on particle filter, and a local refinement obtained from a linear optical flow approximation. The key idea is to iteratively apply these simple and robust steps to efficiently solve complex no...
متن کامل